Google科学家指出:AI编程范式从“数据”为中心向“模型”为中心转变,智能体和多模态整合是未来关键
最近, DeepMind 资深研究科学家 Nenad Tomasev 和 Kaggle CEO D.Sculley 在 2024 极客公园创新大会上分享了他们对 AI 未来发展的深度洞察。
最近, DeepMind 资深研究科学家 Nenad Tomasev 和 Kaggle CEO D.Sculley 在 2024 极客公园创新大会上分享了他们对 AI 未来发展的深度洞察。
强化学习带来的关键突破
Nenad 指出,AlphaZero 的重大突破在于通过自我对弈生成数据,使 AI 不再受限于人类知识。他强调:“如果你的数据仅来源于人类的表现,那么你的系统可能永远无法超越人类的水平。”
目前强化学习面临的主要挑战是需要一个清晰的奖励信号。Nenad 认为:“为了给出这个明确的目标,我们自己首先需要对’我们想要什么’和’我们想如何做到’有清晰的答案。”
AI 开发范式的根本转变
D.Sculley 指出,AI 开发已从数据驱动(AI 1.0)转向模型驱动(AI 2.0):“过去需要从收集数据开始,现在是先寻找一个合适的大模型作为起点,比如 GPT 或 Gemini,然后通过提示词优化、RAG、微调等方式逐步改进。”
未来发展方向
-
智能体和多模态整合将成为下一个重点。Nenad表示:“未来与其说我们始终依赖单一的模型,不如说我们会构建拥有多种能力的智能体。”
-
大小模型协作而非单一大模型。D.Sculley预测:“从长期来看,我们的系统将由多个 AI 模型或智能体相互协作,比如用专有的语言大模型生成内容,同时用小型模型进行验证。”
-
规划和推理能力的提升。Nenad强调深层次推理对解决科学、社会、医疗等复杂任务的重要性。
对开发者的建议
D.Sculley 给年轻开发者的建议很直接:"不要等待,立即开始。"他认为 AI 可能是历史上发展最快的领域,创新速度前所未有。
对于人才需求,行业将更看重那些擅长通过提示词工程、RAG数据库等方式与大语言模型交互的人才,这种工作形式与传统机器学习有明显区别。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
更多推荐
所有评论(0)