conda deactivate python3_Win10,Anaconda (conda 4.7.12, python3.7.5),tensorflow安装
Win10操作系统,conda 4.7.12,python3.7.51.使用管理员权限,打开cmd,进入Anaconda路径D:\Anaconda3\2.Create a virtual environment$conda create -n venv pip python=3.7#select your python wersion$conda activate venv ...
Win10操作系统,conda 4.7.12,python3.7.5
1.使用管理员权限,打开cmd,进入Anaconda路径
D:\Anaconda3\
2. Create a virtual environment
$ conda create -n venv pip python=3.7 #select your python wersion
$ conda activate venv #activate the virtual enveronment
(venv)$ pip install --ignore-installed --upgrade packageURL #install the TensorFlow pip package using its complete URL
(venv)$ conda deactivate #exit virtualenv
completeURL: https://www.tensorflow.org/install/pip?lang=python3#package-location
记住选择‘CPU-only’
如果是python版本3.7,可以使用packageURL:https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-2.0.0-cp37-cp37m-win_amd64.whl
3.Install the TensorFlow pip package
(venv)$ pip install --upgrade tensorflow
(venv)$ python -c "import tensorflow as tf;print(tf.reduce_sum(tf.random.normal([1000, 1000])))" #verity the install
安装的是CPU版本,在验证代码中加入以下代码,忽略警告:
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
4. 配置Anaconda,使用Jupyter
打开Anaconda,修改environment至venv:

重新install Jupyter并打开就可以使用了:

5.测试
TensorFlow官方代码,可以作为测试:
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)
更多推荐





所有评论(0)