最全PyTorch 一小时学会基本操作_pytorch sub,2024年最新绝对干货
(img-Cd1oczty-1715796937285)]创建一个 0~1 随机数的张量矩阵.创建一个空张量矩阵.
·
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
创建数据
torch.empty()
创建一个空张量矩阵.
格式:
torch.empty(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False, memory_format=torch.contiguous_format) → Tensor
参数:
- size: 生成矩阵的形状, 必选
- dtype: 数据类型, 默认为 None
例子:
# 创建一个形状为[2, 2]的矩阵
a = torch.empty(2, 2)
print(a)
# 创建一个形状为[3, 3]的矩阵
b = torch.empty(3, 3)
print(b)
输出结果:
tensor([[0., 0.],
[0., 0.]])
tensor([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]])
torch.zeros()
创建一个全零矩阵.
格式:
torch.zeros(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor
参数:
- size: 生成矩阵的形状, 必选
- dtype: 数据类型, 默认为 None
例子:
# 创建一个形状为[2, 2]的全零数组
a = torch.zeros([2, 2], dtype=torch.float32)
print(a)
# 创建一个形状为[3, 3]的全零数组
b = torch.zeros([3, 3], dtype=torch.float32)
print(b)
输出结果:
tensor([[0., 0.],
[0., 0.]])
tensor([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]])
torch.ones()
创建一个全一矩阵.
格式:
torch.ones(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor
参数:
- size: 生成矩阵的形状, 必选
- dtype: 数据类型, 默认为 None
例子:
# 创建一个形状为[2, 2]的全一数组
a = torch.ones([2, 2], dtype=torch.float32)
print(a)
# 创建一个形状为[3, 3]的全一数组
b = torch.ones([3, 3], dtype=torch.float32)
print(b)
输出结果:
tensor([[1., 1.],
[1., 1.]])
tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]])
torch.tensor()
通过数据创建张量.
格式:
torch.tensor(data, *, dtype=None, device=None, requires_grad=False, pin_memory=False) → Tensor
参数:
- data: 数据 (数组, 元组, ndarray, scalar)
- dtype: 数据类型, 默认为 None
例子:
# 通过数据创建张量
array = np.arange(1, 10).reshape(3, 3)
print(array)
print(type(array))
tensor = torch.tensor(array)
print(tensor)
print(type(tensor))
输出结果:
[[1 2 3]
[4 5 6]
[7 8 9]]
<class 'numpy.ndarray'>
tensor([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]], dtype=torch.int32)
<class 'torch.Tensor'>
torch.rand()
创建一个 0~1 随机数的张量矩阵.
格式:
torch.rand(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor
参数:
- size: 生成矩阵的形状, 必选
- dtype: 数据类型, 默认为 None
例子:
# 创建形状为[2, 2]的随机数矩阵
rand = torch.rand(2, 2)
print(rand)
输出结果:
tensor([[0.6209, 0.3424],
[0.3506, 0.7986]])
数学运算
torch.add()
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
5)]
[外链图片转存中…(img-Cd1oczty-1715796937285)]
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
更多推荐
所有评论(0)