GAN的基本理论和pytorch代码
1.Generation,如何找到数据的分布比如说,在蓝色区域是人脸数据的分布,那么需要让机器找到这个分布。需要找到一个数据分布distributionPG(x;Θ)P_G(x;\Theta)PG(x;Θ) parameterized by Θ\ThetaΘ那么需要找到一组Θ\ThetaΘ使得$P_G(x:\Theta) $ close $ p_{data}(x)$##2.KL Divergen
1.Generation,如何找到数据的分布
比如说,在蓝色区域是人脸数据的分布,那么需要让机器找到这个分布。
需要找到一个数据分布distributionPG(x;Θ)P_G(x;\Theta)PG(x;Θ) parameterized by Θ\ThetaΘ
那么需要找到一组Θ\ThetaΘ使得$P_G(x:\Theta) $ close $ p_{data}(x)$
##2.KL Divergence
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-TfbNPt4x-1614995143823)(image-20210305084048458.png)]
Θ∗=argmax∏i=1mPG(xi;Θ)=argmaxlog∏i=1mPG(xi;Θ)\Theta^*=arg max\prod_{i=1}^m{P_G(x^i;\Theta)}=arg maxlog\prod_{i=1}^m{P_G(x^i;\Theta)}Θ∗=argmax∏i=1mPG(xi;Θ)=argmaxlog∏i=1mPG(xi;Θ)
=argmaxEx pdata=argmaxE_{x~p_{data}}=argmaxEx pdata[logPG(x;Θ)][logP_G(x;\Theta)][logPG(x;Θ)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-cGE2k4sK-1614995143826)(image-20210305092936464.png)]
3.如何定义Generator?
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NNeDMFlL-1614995143826)(image-20210305094140466.png)]
实际上就是要缩小pdata和PGp_{data}和P_Gpdata和PG之间的Divergence,但是却不知道两者的公式具体是什么,那么这就由GAN来解决
虽然不知pdata和PGp_{data}和P_Gpdata和PG长什么样子,但是可以通过二者生成数据。如下图所示:
那么如何根据生成的数据,来衡量这两个distribute的Divergence?
4.通过Discriminator来衡量pG和Pdatap_G 和P_{data}pG和Pdata之间的Divergence
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pe3ti5cR-1614995143828)(image-20210305100530419.png)]
当二者的数据分布很不相同时,discriminator很容易训练,但是当二者的数据分布接近时,会变的很难训练
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-waXnNRKI-1614995143829)(image-20210305101707063.png)]
5.如何得到最好的Discriminator?和其的数学推导
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FZDMpgJj-1614995143830)(image-20210305102904595.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-W2q2MF9p-1614995143831)(image-20210305103133210.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1tizFeNE-1614995143831)(image-20210305103450329.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-VHy73T8m-1614995143832)(image-20210305103625525.png)]
##6.如何得到最好的Generator
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7gFOEfzo-1614995143832)(image-20210305104435771.png)]
绿色的高度表达的是PGP_GPG生成的数据与pdatap_{data}pdata之间的divergence,那么此图中G3是最好的
那么如何训练Generator呢?
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-k5TPpyuz-1614995143832)(image-20210305105202420.png)]
对含有max的表达式进行求导和进行梯度下降法,先看落在哪个区间,然后对最大值的表达式求导。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ymYickIH-1614995143833)(image-20210305105722024.png)]
7.实际是如何做的
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-csQcfVIl-1614995143833)(image-20210305110827696.png)]
实际操作时是不好计算期望的,在定义Discriminator时实际和二分类是十分相似的,如上图所示。
8具体的训练算法流程
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-z5Ctd1NC-1614995143834)(image-20210305122016006.png)]
训练鉴别器时,对于训练数据x,D(x)的得分越高越好,而对于生成器生成的数据x^,D(x^)的得分则是越低越好。对应的就是最大化如下公式:
V=1m∑i=1mlogD(xi)+1m∑i=1mlog(1−D(xii))V=\frac{1}{m}\sum_{i=1}^{m}logD(x^i)+\frac{1}{m}\sum_{i=1}^{m}log(1-D(x^{ii}))V=m1∑i=1mlogD(xi)+m1∑i=1mlog(1−D(xii))
训练生成器时,那么对于生成器来说生成的数据质量越高越好,即接近样本数据,那么这是鉴别器D来对生成的数据进行判断时,打的分越高越好。对应最小化下列公式:
V=1m∑i=1mlog(1−D(G(zi)))V=\frac{1}{m}\sum_{i=1}^{m}log(1-D(G(z^i)))V=m1∑i=1mlog(1−D(G(zi)))
在实际对Genertor优化实现过程中,公式做了些调整,因为开始时genertor生成的数据x,D(x)会给出很小的值,而源公式
V=−−−+Ex PGV=---+E_{x~P_G}V=−−−+Ex PG[Log(1-D(x))]在数值很小的时候斜率是很小的,所以最后可以调整成V=Ex PGV=E_{x~P_G}V=Ex PG[-log(D(x))],如下图:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-swsjtaQ3-1614995143834)(image-20210305122759018.png)]
9训练过程的直观感受
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9bJM87nl-1614995143835)(image-20210305123110802.png)]
10.GAN的pytorch代码
import argparse
import os
import numpy as np
import math
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch
os.makedirs("images", exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=28, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval betwen image samples")
opt = parser.parse_args()
print(opt)
img_shape = (opt.channels, opt.img_size, opt.img_size)
cuda = True if torch.cuda.is_available() else False
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
def block(in_feat, out_feat, normalize=True):
layers = [nn.Linear(in_feat, out_feat)]
if normalize:
layers.append(nn.BatchNorm1d(out_feat, 0.8))
layers.append(nn.LeakyReLU(0.2, inplace=True))
return layers
self.model = nn.Sequential(
*block(opt.latent_dim, 128, normalize=False),
*block(128, 256),
*block(256, 512),
*block(512, 1024),
nn.Linear(1024, int(np.prod(img_shape))),
nn.Tanh()
)
def forward(self, z):
img = self.model(z)
img = img.view(img.size(0), *img_shape)
return img
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.model = nn.Sequential(
nn.Linear(int(np.prod(img_shape)), 512),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 256),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(256, 1),
nn.Sigmoid(),
)
def forward(self, img):
img_flat = img.view(img.size(0), -1)
validity = self.model(img_flat)
return validity
# Loss function
adversarial_loss = torch.nn.BCELoss()
# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()
if cuda:
generator.cuda()
discriminator.cuda()
adversarial_loss.cuda()
# Configure data loader
os.makedirs("../data", exist_ok=True)
dataloader = torch.utils.data.DataLoader(
datasets.MNIST(
"../data",
train=True,
download=False,
transform=transforms.Compose(
[transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
),
),
batch_size=opt.batch_size,
shuffle=True,
)
# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
# ----------
# Training
# ----------
for epoch in range(opt.n_epochs):
for i, (imgs, _) in enumerate(dataloader):
# Adversarial ground truths
valid = Variable(Tensor(imgs.size(0), 1).fill_(1.0), requires_grad=False)
fake = Variable(Tensor(imgs.size(0), 1).fill_(0.0), requires_grad=False)
# Configure input
real_imgs = Variable(imgs.type(Tensor))
# -----------------
# Train Generator
# -----------------
optimizer_G.zero_grad()
# Sample noise as generator input
z = Variable(Tensor(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim))))
# Generate a batch of images
gen_imgs = generator(z)
# Loss measures generator's ability to fool the discriminator
g_loss = adversarial_loss(discriminator(gen_imgs), valid)
g_loss.backward()
optimizer_G.step()
# ---------------------
# Train Discriminator
# ---------------------
optimizer_D.zero_grad()
# Measure discriminator's ability to classify real from generated samples
real_loss = adversarial_loss(discriminator(real_imgs), valid)
fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
d_loss = (real_loss + fake_loss) / 2
d_loss.backward()
optimizer_D.step()
print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
% (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item())
)
batches_done = epoch * len(dataloader) + i
if batches_done % opt.sample_interval == 0:
save_image(gen_imgs.data[:25], "images/%d.png" % batches_done, nrow=5, normalize=True)
更多推荐
所有评论(0)