AI编程必看收藏:Vibe Coding氛围编程与大模型结合开发指南
Vibe Coding是利用AI大模型辅助编程的方法论,强调先做好项目规划(GDD/PRD)和实现计划,通过Memory Bank维持上下文一致性,采用小步迭代+验证+提交的开发模式。该方法可快速原型验证,但需注意AI生成代码可能存在结构混乱和隐藏bug的风险,建议结合传统软件工程流程,保持测试习惯和适度审查,平衡开发效率与代码质量。
Vibe Coding是利用AI大模型辅助编程的方法论,强调先做好项目规划(GDD/PRD)和实现计划,通过Memory Bank维持上下文一致性,采用小步迭代+验证+提交的开发模式。该方法可快速原型验证,但需注意AI生成代码可能存在结构混乱和隐藏bug的风险,建议结合传统软件工程流程,保持测试习惯和适度审查,平衡开发效率与代码质量。
整理一下 Vibe Coding 氛围编程最佳实践

- 清晰规划比盲目 “让 AI 自由发挥” 更重要
-
“Planning is everything” ——不要让 AI 自己随意规划整个项目,否则代码会混乱。
-
最开始要做一个 Game Design Document(GDD,或者如果是应用的话,就是产品需求文档 PRD),以 Markdown 格式写清你的构想。
-
之后要让 AI 基于这个设计文档 +技术选型,生成一个 实现计划(implementation plan),而不是直接让 AI开始写代码。
-
实现计划里的每一步都应该是小粒度,并且附带测试,这样每次 AI 写出的功能都能被验证。

- 维持上下文一致性:用 Memory Bank(记忆库)
-
建议创建一个
memory-bank文件夹,把 GDD、tech-stack、implementation plan、progress、architecture 等重要文档都放进去。 -
AI 在生成代码时 “总是” 读取关键规则 /文档(例如 architecture.md, game-design-document.md),以保证它写出来的东西是基于你当前的整体结构,而不是零散乱写。
-
你还应该在
progress.md中记录每一步完成情况,在architecture.md中补充每个文件或者模块的架构解释。这样未来回顾或让 AI 继续开发时,会更清晰。

- 迭代 + 验证 + 提交
1)用 AI 写第一步(实现计划里 Step 1)之后,不要马上继续下一步,而是让你自己运行测试:确认 AI 写的代码是否满足预期。
2)每完成一个 step,就 commit 一次。这样可以保留历史,也便于后退/修正。
3)每一步都开启新的对话(新的 Chat /新上下文)让 AI “重新读 memory-bank + progress 再继续下一步”。这种方式能避免上下文混乱。

- 为新特性写 feature-specific 文档
1)在基础框架(base game / app)完成后,想加新功能(特效、声音、UI …)时,不要直接命令 AI 写代码,而是为每个大功能写一个 feature-implementation.md:列出小步骤 +测试。
2)然后让 AI 逐步实现这些 feature,保持明确、模块化、可测试。
- 错误处理 & 卡住时的方法
1)如果 AI 生成功能出错,用 Claude Code 的 /rewind 回到上一步重新尝试。
2)对于 JavaScript 错误,建议把控制台(console)日志/错误复制到 VSCode,让 AI 帮你分析。
3)如果问题很复杂、卡住了,可以把整个 repo 做成一个大文件(用类似 RepoPrompt / uithub 的方式),然后请 AI 从整体视图帮你诊断。

- 优化 AI 工具使用
1)对于小改动(refactor /小调整等),建议使用较小 /中等能力的模型(如 GPT-5 medium)进行,以节省成本,同时保持响应质量。
2)配合使用 CLI 和 VSCode:既可以在命令行里运行 Codex CLI / Claude Code 来看 diff,又可以通过 VSCode 插件维持开发节奏。
3)为 Claude Code 或 Codex CLI 自定义命令,比如 /explain $arguments:先让模型理解某个模块 /变量 /逻辑,然后再让它基于理解做任务,这样能提升生成质量。
4)频繁清除对话上下文(如 /clear 或 /compact),避免旧对话内容影响新的 prompt。
- 风险意识与权衡
1)虽然 vibe coding 鼓励快速产出,但这种方式有潜在风险:AI 写出的代码可能结构混乱、未来维护困难。社区里有人提到 “代码混乱到调试噩梦”。
2)有人指出 AI 写出的逻辑有 bug(如并发问题、不正确的 API 调用等),这些 bug 很难被察觉,因为代码“看起来对”。
3)如果项目到后期进入生产阶段(或用户较多时),最好考虑重构(vibe-refactor):有人在社区里专门提供这种服务,把用 AI 快速写出的 “原型 / β 版本” 变得更健壮。
4)保持适度的审查机制:虽然是 vibe coding,但定期审查代码、做重构、建立测试习惯非常重要。

- 持续反馈与学习
1)每次迭代完成后,不仅记录 progress,还记录 architecture 的变动和思考,这样下次生成代码时 AI 有 “记忆” 可用。
2)如果你卡住了,或者某些 prompt /策略不成功,可以向社区求助(例如 Reddit 的 r/vibecoding)。很多人都在分享他们失败 +成功的经验。
3)建议保持小步快跑 — 用 AI 快速原型验证想法,不要一次把所有功能堆进去。发现方向对了再慢慢加。

- 综合心得
1)vibe coding 是一个强大的快速原型工具:它可以让你很迅速地把想法验证出来。但它不应该取代所有传统的软件工程流程,尤其是当你追求长期维护或扩大规模时。
2)上下文管理非常关键:记忆库(memory-bank) + 明确规则(Always read architecture / GDD)是维持项目健康的重要支撑。
3)测试不可省略:每一步有测试、每个 feature 都拆开实现并验证,是保证生成代码可用性的关键。
4)灵活结合 AI 与人类判断:AI 写的东西非常有用,但人类需要持续审查、校正、重构。
5)社区很有参考价值:阅读其他 vibe coder 的经验(比如他们卡住了什么、重构怎么做)对自己的实践非常有帮助。


最后
我在一线科技企业深耕十二载,见证过太多因技术卡位而跃迁的案例。那些率先拥抱 AI 的同事,早已在效率与薪资上形成代际优势,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑。
我整理出这套 AI 大模型突围资料包:
- ✅AI大模型学习路线图
- ✅Agent行业报告
- ✅100集大模型视频教程
- ✅大模型书籍PDF
- ✅DeepSeek教程
- ✅AI产品经理入门资料
完整的大模型学习和面试资料已经上传带到CSDN的官方了,有需要的朋友可以扫描下方二维码免费领取【保证100%免费】👇👇

为什么说现在普通人就业/升职加薪的首选是AI大模型?
人工智能技术的爆发式增长,正以不可逆转之势重塑就业市场版图。从DeepSeek等国产大模型引发的科技圈热议,到全国两会关于AI产业发展的政策聚焦,再到招聘会上排起的长队,AI的热度已从技术领域渗透到就业市场的每一个角落。

智联招聘的最新数据给出了最直观的印证:2025年2月,AI领域求职人数同比增幅突破200% ,远超其他行业平均水平;整个人工智能行业的求职增速达到33.4%,位居各行业榜首,其中人工智能工程师岗位的求职热度更是飙升69.6%。
AI产业的快速扩张,也让人才供需矛盾愈发突出。麦肯锡报告明确预测,到2030年中国AI专业人才需求将达600万人,人才缺口可能高达400万人,这一缺口不仅存在于核心技术领域,更蔓延至产业应用的各个环节。


资料包有什么?
①从入门到精通的全套视频教程⑤⑥
包含提示词工程、RAG、Agent等技术点
② AI大模型学习路线图(还有视频解说)
全过程AI大模型学习路线

③学习电子书籍和技术文档
市面上的大模型书籍确实太多了,这些是我精选出来的

④各大厂大模型面试题目详解

⑤ 这些资料真的有用吗?
这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。
所有的视频教程由智泊AI老师录制,且资料与智泊AI共享,相互补充。这份学习大礼包应该算是现在最全面的大模型学习资料了。
资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。


智泊AI始终秉持着“让每个人平等享受到优质教育资源”的育人理念,通过动态追踪大模型开发、数据标注伦理等前沿技术趋势,构建起"前沿课程+智能实训+精准就业"的高效培养体系。
课堂上不光教理论,还带着学员做了十多个真实项目。学员要亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!


如果说你是以下人群中的其中一类,都可以来智泊AI学习人工智能,找到高薪工作,一次小小的“投资”换来的是终身受益!
应届毕业生:无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型:非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能 突破瓶颈:传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓**

更多推荐



所有评论(0)