部署笔记(一): 安装CUDA, cudnn,编译一个简单的CUDA程序(c++),以及vscode模板文件
学习部署前的环境配置
·
1. 安装CUDA
- 查看Ubuntu操作系统的版本
lsb_release -a
我的版本是
Distributor ID: Ubuntu
Description: Ubuntu 18.04.1 LTS
Release: 18.04
Codename: bionic
- 查看驱动支持的最高级的CUDA Toolkit版本,下面输出我最高支持11.7 CUDA Version
nvidia-smi
Fri Feb 24 15:48:08 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 515.43.01 Driver Version: 516.01 CUDA Version: 11.7 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 NVIDIA GeForce ... On | 00000000:02:00.0 Off | N/A |
| N/A 0C P0 N/A / N/A | 0MiB / 4096MiB | 1% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
- 去官网下载CUDA Toolkits(https://developer.nvidia.com/cuda-toolkit-archive)
- 选择Ubuntu 18.04 runfile版本,然后使用提供指令
- 不要安装驱动
- 整体我参考了这两篇帖子
- https://blog.csdn.net/my__blog/article/details/125720601
- https://blog.csdn.net/weixin_42760399/article/details/122579073
- https://mp.weixin.qq.com/s/pBeAUqqIXLdn8ggv30c0hA
- 下载CUDA
2. 在vscode的环境下试验CUDA
- 之前Ubuntu用g++编译的,所以直接 g++ main.cpp 就可以了,现在换了一下,用nvcc编译代码,换成了CUDA编程
- vscode下面的几个文件
- task.json
{
"version": "2.0.0",
"tasks": [
{
"label": "build",
"type": "shell",
"command": "/usr/local/cuda-11.7/bin/nvcc",
"args": [
"-I/home/user/cuda-11.7/include",
"${file}",
"-o",
"${fileDirname}/${fileBasenameNoExtension}"
],
"group": {
"kind": "build",
"isDefault": true
}
}
]
}
- launch.json
{
"version": "0.2.0",
"configurations": [
{
"name": "CUDA Program",
"type": "cppdbg",
"request": "launch",
"program": "${fileDirname}/test",
"args": [],
"stopAtEntry": false,
"cwd": "${workspaceFolder}",
"environment": [],
"externalConsole": true,
"MIMode": "gdb",
"miDebuggerPath": "/usr/bin/gdb",
"preLaunchTask": "build"
}
]
}
- c_cpp_properties.json
{
"configurations": [
{
"name": "Linux",
"compilerPath": "/usr/local/cuda/bin/nvcc",
"intelliSenseMode": "linux-gcc-x64",
"includePath": [
"${workspaceFolder}/**",
"/usr/local/cuda-11.7/include/**"
],
"defines": [],
"browse": {
"path": [
"${workspaceFolder}",
"/usr/local/cuda/include/**"
],
"limitSymbolsToIncludedHeaders": true,
"databaseFilename": ""
},
"cStandard": "c17",
"cppStandard": "c++14"
}
],
"version": 4
}
- 写一个简单的CUDA编程代码,然后选择nvcc build, 不是nvcc gdb 然后跑通了会有一个可执行文件,这样就算是简单的配置好了
#include <iostream>
#include <cuda_runtime.h>
__global__ void add(int a, int b, int *c)
{
*c = a + b;
}
int main()
{
int a = 2, b = 3, c;
int *d_c;
cudaMalloc((void **)&d_c, sizeof(int));
cudaMemcpy(&c, d_c, sizeof(int), cudaMemcpyDeviceToHost);
std::cout << a << " + " << b << " = " << c << std::endl;
cudaFree(d_c);
return 0;
}
3. 安装Cudnn
- 官网安装(https://developer.nvidia.com/rdp/cudnn-archive)
- 把包放到文件夹下面
- cd /home/predy/Github/DL_Deploy/1.Install
- sudo dpkg -i cudnn-local-repo-ubuntu1804-8.6.0.163_1.0-1_amd64.deb
- 出现公钥问题: sudo apt-key add /var/cudnn-local-repo-ubuntu1804-8.6.0.163/7fa2af80.pub
- sudo apt-get update (我出现的问题,有两个仓库的公钥无法验证)
- sudo cp /var/cudnn-local-repo-ubuntu1804-8.5.0.96/cudnn-local-7B49EDBC-keyring.gpg /usr/share/keyrings/
- sudo apt-key adv --fetch-keys https://apt.kitware.com/keys/kitware-archive-latest.asc
- 再次运行 sudo apt-get update
- sudo apt-get install libcudnn8-dev(自动安装)
- 或者使用这个指定版本的安装sudo apt-get install libcudnn8=8.6.0.163-1+cuda11.7 libcudnn8-dev=8.6.0.163-1+cuda11.7
- nvcc --version(查看版本)
- 总结: 先用nvdia-smi查看当前所支持的最高CUDA Tookilt, 再去cudnn查看版本,安装对应的cudnn和CUDA,最后通过测试
- 成功案例
predy@DESKTOP-IU6IR4M:~/DL_Deploy/1.CUDA_cudnn_Installation$ cat /usr/include/cudnn_version.h | grep CUDNN_MAJOR -A 2
#define CUDNN_MAJOR 8
#define CUDNN_MINOR 6
#define CUDNN_PATCHLEVEL 0
更多推荐



所有评论(0)