pytorch转为onnx格式:

def Torch2Onnx(model,input_size,output_name,istrained=True):
    '''
    :param: model
    :param: input_size .e.t. (244,244)
    :param: output_name .e.t. "test_output"
    :param: if convert a trained model or not. default: True
    '''
    x = Variable(torch.randn(1,3,input_size[0],input_size[1])).cuda()
    if istrained:
        torch_out = torch.onnx.export(model,x,output_name,verbose=True)
    else:
        torch_out = torch.onnx.export(model,x,output_name,export_params=False,verbose=True) # Only export a untrained model.

使用举例:

model = model()
model.load_state_dict(torch.load(weight_path))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
input_size = (384,288)
Torch2Onnx(model,input_size,"test.onnx")

获取model中的params:

请注意:不同的方法默认model在cpu还是在cuda上是不一样的,如果出现类似RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same的报错,请检查weight是否应该在cuda上。

方法一:使用torchsummary
  1. 使用pip安装torchsummary:
    pip install torchsummary

  2. 代码片段:

    from torchsummary import summary
    model = model()
    model.load_state_dict(torch.load(weight_path))
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = model.to(device)
    summary(model,(3,384,288))
    

torchstat结果示意

方法二:使用torchstat
  1. 使用pip安装torchstat:
    pip install torchstat

  2. 代码片段(和summary差不多)

    from torchstat import stat
     model = model()
     model.load_state_dict(torch.load(weight_path))
     device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
     stat(model,(3,384,288))
    

torchsummary结果示意

方法三:使用thop(不太推荐)
  1. 使用pip安装thop:
    pip install thop

  2. 代码片段:

    from thop import profile,clever_format
    model = model()
     model.load_state_dict(torch.load(weight_path))
     device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
     flops, params = profile(model,inputs=())
     flops,params = clever_format(flops,params,"%.3f")
    
Logo

汇聚全球AI编程工具,助力开发者即刻编程。

更多推荐