python 解析pb文件_tensorflow, ckpt 转 pb 并进行预测
tensorflow模型打包成pb多个pb模型合并成一个1.查看节点名字对 tf 不是很熟悉,所以有时间节点名字不清楚,用此办法找节点名字# 处在调试状态,图已经建立起来后graph = tf.get_default_graph().as_graph_def()with open('graph', 'w', encoding='utf-8') as fgraph:fgr...
·
tensorflow模型打包成pb
多个pb模型合并成一个
1. 查看节点名字
对 tf 不是很熟悉,所以有时间节点名字不清楚,用此办法找节点名字
# 处在调试状态,图已经建立起来后
graph = tf.get_default_graph().as_graph_def()
with open('graph', 'w', encoding='utf-8') as fgraph:
fgraph.write(str(g.node))
# 然后根据程序中的节点名字去保存的文件中搜索,在后面生成 pb 文件写结点名字的时候用
# saver.save(sess, 'model.ckpt') 里面保存的是变量,并不是所有图的节点
2. 生成 pb 文件
# output_node_names 为输出节点的名字
def freeze_graph(path='model.ckpt', output='model.pb'):
saver = tf.train.import_meta_graph(path+'.meta', clear_devices=True)
graph = tf.get_default_graph()
input_graph_def = graph.as_graph_def()
with tf.Session() as sess:
saver.restore(sess, path)
output_graph_def = graph_util.convert_variables_to_constants(
sess=sess,
input_graph_def=input_graph_def, # = sess.graph_def,
output_node_names=['output/scores'])
with tf.gfile.GFile(output, 'wb') as fgraph:
fgraph.write(output_graph_def.SerializeToString())
# 程序中的输出节点
# with name_scope('output'):
# self.scores = tf.*(..., name='scores')
3. inference
主要是利用 get_tensor_by_name 来实现(注:此处节点名字要加上 :0)
with tf.gfile.GFile('model.pb', 'rb') as fgraph:
graph_def = tf.GraphDef()
graph_def.ParseFromString(fgraph.read())
with tf.Graph().as_default() as graph:
tf.import_graph_def(graph_def, name='')
input_x = graph.get_tensor_by_name('input_x:0')
pred = graph.get_tensor_by_name('output/scores:0')
sess = tf.Session(graph=graph)
scores = sess.run(pred, feed_dict={input_x: x})
4. 合并多个图
用于将多个图合并到一起,这样只用一个 sess 就可以得到多个 model 输出
import tensorflow as tf
from tensorflow.python.framework import graph_util
output_nodes = ['outputs']
def load_pb(path='model.pb'):
with tf.gfile.GFile(path, 'rb') as fgraph:
graph_def = tf.GraphDef()
graph_def.ParseFromString(fgraph.read())
return graph_def
def combined_graph():
with tf.Graph().as_default() as g_combine:
with tf.Session(graph=g_combine) as sess:
graph_a = load_pb('graph_a.pb')
graph_b = load_pb('graph_b.pb')
tf.import_graph_def(graph_a, name='')
tf.import_graph_def(graph_b, name='')
g_combine_def = graph_util.convert_variables_to_constants(
sess=sess,
input_graph_def=sess.graph_def,
output_node_names=output_nodes)
tf.train.write_graph(g_combine_def, './', 'model_combine.pb', as_text=False)
更多推荐




所有评论(0)