2025年每个人都该学会开发AI Agent!

Agent并非聊天机器人的升级版。它不仅会告诉你“如何做”,还会“帮你做”。2025年,AI Agent(智能体)已成为企业降本增效的“数字劳动力”,它们不仅能理解指令,更能像人类一样规划任务、调用工具、记忆交互,完成从“分析竞品报告”到“自动发送邮件”这样的全流程操作。

Agent=大模型+记忆+主动规划+工具使用

DeepSeek引爆技术平权,普通人也能玩转AI

中国大模型DeepSeek-R1的横空出世,以1/70的训练成本、3%的定价颠覆行业,让AI开发从“高门槛”走向“平民化”。这意味着:无需天价算力,用Coze这类低代码平台+开源模型,小白也能快速搭建智能体。

扣子(Coze)是字节跳动推出的Agent开发平台,扣子最初将Agent称为Bot,2024年10月改版后,将其称为智能体。海外版面向海外用户和市场,可调用GPT-4o、GPT-4-Turbo、Gemini等国外大模型,而国内版只能调用国内的大模型,如豆包、Kimi、Baichuan 4、通义千问、GLM-4等。

2025年2月6日,扣子已支持 DeepSeek 最新模型,在扣子,你可以体验到 DeepSeek-R1 及 DeepSeek-V3 等模型。

图片

扣子是一个非常易用、扩展能力强大、生态活跃的Agent开发平台,非常适合零编程基础的人员使用。**《零基础开发AI Agent——手把手教你用扣子做智能体》**一书以扣子国内版为Agent开发平台,全面介绍扣子各项功能的使用技巧、基于扣子开发Agent的案例。

从0开始设计一个Agent

开发Agent的“3-10”实施框架

基于Agent开发实践,我们总结出“3-10”实施框架,如图所示,即通常会按照3个阶段,10个环节开发一个具备生产级应用、商业化能力的Agent。

图片

(1)规划Agent的阶段。 该阶段包括定义Agent的应用场景、梳理业务流程和分析痛点、梳理Agent的功能定位和开发需求3个环节。

(2)设计Agent的阶段。 包括绘制Agent的运行流程图、设置大模型及参数、设计提示词、配置Agent技能、设计用户沟通页面5个环节。

(3)上线Agent的阶段。 包括测试与调优、发布两个环节。

开发Agent的策略

按照以上开发流程,我们可以一步一步地完成Agent的开发。然而,仅仅掌握这些步骤是不够的,要想开发出一个优秀的Agent,还需要秉持良好的Agent开发理念,遵守实施原则。这些理念和原则将指导我们既能够充分发挥Agent的能力,又能够理解现阶段Agent的局限性。

懂场景和业务,比懂AI技术更重要

开发者需要明白,在开发Agent的过程中,懂场景和业务的重要性远远超过懂AI技术。AI技术只有与业务紧密结合,才能真正发挥其作用。

目前,AI应用还处于早期阶段。大多数人认为,自己只是Agent的使用者,而不是参与者,更不会是开发者。但仅靠程序员很难推动Agent的全面繁荣和深入发展。下图所示为AI技术落地应用的3个层次。第一个层次是工作+AI,我们利用大模型进行工作提效、生活问答。第二个层次是业务+AI,AI应用理解业务,基于业务场景给予更专业的回复,成为Agent数字员工。第三个层次是业务×AI,实现了更加系统、全面的AI与业务的结合,让我们的工作从数字化进入智能化。

图片

在这3个层次中,理解业务、业务能力成为驱动AI技术深化应用的关键因素。 因此,Agent开发者一定要具有业务专家的思维,并提高理解业务能力和设计能力,从应用场景和业务分析视角规划和设计Agent,从而提高Agent解决问题的效果。

使用工具拓展能力,是Agent具有价值的关键

Agent=大模型×**(规划+记忆+使用工具+行动)**。要想评估一个Agent的功能是否强大,可以看它在这4个方面的配置情况。

举个例子,一个角色聊天类Agent如果没有配置知识库,没有使用插件,也没有工作流、数据库、记忆等,仅仅设计了提示词,那么它的能力和ChatBot不会有很大差别。早期的Agent开发平台提供的简易Agent,差不多就只是个性化的ChatBot,或者只达到了Copilot的水平,从严格意义上来讲不能称其为真正意义上的Agent。

坚持小而美,聚焦特定的应用场景和功能

Agent是针对特定的应用场景的轻应用,可以和RPA结合。Agent可以通过API接入日常软件,也可以和其他Agent协作。因此,Agent开发者应该坚持小而美的理念,从最小颗粒度的应用场景和功能入手,定义Agent的应用场景,设计Agent。应用场景越具体,用户越聚焦,Agent的实现路径就越明确,其落地性就越强、价值就越大。反之,如果我们用开发软件的思维,划定了复杂而广泛的应用场景和功能,那么很可能导致在技术上无法实现Agent,或者其稳定性不佳。

把Agent当成助手,而不是一个完全托管的解决方案

无论是AI技术,还是Agent的发展,都处于探索阶段。我们离AGI还有一段距离。目前,Agent还处于从“好玩”到“有用”的过渡状态。Agent在智能化、自动化、多功能化、性能稳定性等方面都需要提升。因此,作为Agent开发者,我们必须清楚地认识到这一点,对Agent过于理想化的想法,可能会给Agent的开发,或者Agent的应用推广带来困难和风险。

另外,Agent作为AI工具,它的设计初衷是辅助人类,提高效率,而不是取代人类的决策。因此,在使用Agent时,我们应该将其视为一个助手,而不是一个完全托管的解决方案。用户需要对Agent输出的内容进行判断、筛选、加工,而不是盲目地接受和直接使用。

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈


半个月前,粗心的我细心地发现,有一本关于 Agent 的书籍竟然在上市预售,作者还是熟悉的咖哥(黄佳老师,当年拜读过他的《零基础学机器学习》)果断下单。

而在昨天,我终于收到了!立刻花了半个小时品读起来~觉得还是非常不错的,所以忍不住给大家分享推荐一下!

咖哥的写作习惯与咱们公号类似,将晦涩的理论用通俗幽默的方式表达,妙趣横生,非常适合小白。

全书一共有九章,涉及基础理论、Agent 框架、Multi-Agent、代码实战等丰富内容,大纲如下。

整本书更偏向实战,就像书名所说的,相当一部分都是代码教学而非枯燥的理论研究,我认为即使是代码小白,也能跟着步骤一步一步用代码实现一个 Agent!(实在写不会就问问 AI 哈哈哈)

起初我最担心的一点是,AI 啊 Agent 啊,技术更新的非常快,出版的周期还是有些长的,会不会内容都有些过时了?

看完之后打消了我这个疑虑,书中既介绍了 ReAct、LangChain 等经典框架,也涉及了爆火的 AutoGPT、Camel 等,还有 AutoGen、MetaGPT 这样的多智能体框架,还是非常惊喜的!

这《大模型应用开发动手做AI Agent》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

PDF书籍: 完整版本链接获取

👉[CSDN大礼包🎁:大模型应用开发动手做AI Agent》免费分享(安全链接,放心点击)]👈

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

Logo

汇聚全球AI编程工具,助力开发者即刻编程。

更多推荐